If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+32x+29=0
a = 8; b = 32; c = +29;
Δ = b2-4ac
Δ = 322-4·8·29
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-4\sqrt{6}}{2*8}=\frac{-32-4\sqrt{6}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+4\sqrt{6}}{2*8}=\frac{-32+4\sqrt{6}}{16} $
| 8x2+32x+29=0 | | 39-6x=-5x-(1-4x) | | 3|5x+1|=33 | | 7(-6x+3)=483 | | 7x+6x-20=80-7x | | 7(-3x+10)=196 | | 5x+5=250 | | -2/9x-7/36x+1/4x=-42 | | 4.5+k=15.8 | | -10.1+v=20.5 | | 16=11+g | | 7-g=14 | | A=(8x-1) | | -(j+2)=4 | | 0=3x+17x-6 | | -2x^2+120x-800=0 | | 6.1t-2.1t+2=3t+1.5 | | 8/5x-x=51 | | 2x2+3x=-6 | | X^2+9x+30=10 | | –2y+16=0 | | (4-3i)/(-1-4i)=0 | | 3m+12=-m-m+16 | | 2x-20°=180 | | 10n=36 | | x^2=16+137 | | (3x+5)=122 | | x²=16x²+137 | | 15^5x=3 | | 5+3(9^4x-5)=333 | | 4r−12=4 | | 4q+-5=11 |